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Abstract--For object recognition invariant to changes in the object's position, size, and in-plane rotation,

higher-order neural networks (HONNs) have numerous advantages over other neural network approaches.
Because distortion invariance can be built into the architecture of the network, HONNs need to be trained

on just one view of each object, not numerous distorted views, reducing the training time significantly.
Further, 100_0 accuracy can be guaranteed for noise-free test images characterized by the built-in
distortions. Specifically, a third-order neural network trained on just one view of an SR-71 aircraft and a

U-2 aircraft in a 127 x 127 pixel input field successfully recognized all views of both aircraft larger than 70_o
of the original size, regardless of orientation or position of the test image. Training required just six passes.
In contrast, other neural network approaches require thousands of passes through a training set consisting
of a much larger number of training images and typically achieve only 80-90% accuracy on novel views of
the objects. The above results assume a noise-free environment. The performance of HONNs is explored
with non-ideal test images characterized by white Gaussian noise or partial occlusion. With white noise
added to images with an ideal separation of background vs. foreground gray levels, it is shown that HONNs
achieve 100% recognition accuracy for the test set for a standard deviation up to ~ 10% of the maximum
gray value and continue to show good performance (defined as better than 75% accuracy) up to a standard
deviation of ~ 14%. HONNs are also robust with respect to partial occlusion. For the test set of training
images with very similar profiles, HONNs achieve 100% recognition accuracy for one occlusion of ~ 13%
of the input field size and four occlusions of ~ 70% of the input field size. They show good performance for
one occlusion of ~ 239/0of the input field size or four occlusions of ~ 15% of the input field size each. For
training images with very different profiles, HONNs achieve 100% recognition accuracy for the test set for
up to four occlusions of _ 2% of the input field size and continue to show good performance for up to four
occlusions of ~ 23% of the input field size each.

Neural networks Higher-order White noise Gaussian noise Occlusion

Object recognition lnvariant classification Coarse-coding

INTRODUCTION

An important aspect of the human visual system is

the ability to recognize an object despite changes in

the object's position in the input field, its size, or its

orientation. For many industrial applications, machine

vision systems must also have this ability. Tradition-

ally, machine vision systems have separated the object

recognition task into two independent subtasks: feature

extraction followed by classification. (1,2) The feature

extraction task begins with an object and a procedure

for extracting relevant features. The features are chosen

by the system designer to be invariant to the object's

position, scale, and orientation. The output of this

task, which is a vector of feature values, is then passed

to the classification subtask. Based on a large set of
these vectors, the classifier determines which are the

distinguishing features of each object class such that

new vectors are placed into the correct class within a

predetermined error.

A more recent approach for distortion invariant

object recognition combines the tasks into a single

system. Given only a set of views of each object class

it is required to distinguish between, the system deter-

mines which features to extract as well as which are

the distinguishing features of each class. The advantage
of this approach is that the two subtasks can share

information and improve the classifier's separating

ability by extracting the useful features. The disadvan-

tage, however, is that the system requires a longer

training period since it has no prior information about

the relationship between the set of training views. Object

recognition systems based on neural networks are an

example of this approach.

The most popular method used in neural network-

based object recognition systems is backpropagation-

trained first-order neural networks, (a) as illustrated in

Fig. 1. The training process consists of applying input

vectors (distorted views of each class) sequentially and

adjusting the network weights using a gradient descent

learning rule until the input vectors produce the desired

output vectors (class assignment) within some pre-

determined error. For a first-order network to learn to

distinguish between a set of objects independent of

their position, scale, or in-plane orientation, the net-

work must be trained on a large set of distorted views.

The desired effect of including distorted views into the

training set is that the hidden layers will extract the

necessary invariant features and the network will gen-

eralize the input vectors so that it can also recognize
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Fig. 1. First-order neural network. In a first-order neural

network, input nodes are connected directly to output or

hidden layer nodes. No advantage is taken of any known
relationships between the input nodes.

distorted views that are not part of the training set.
Such generalization has been demonstrated in num-
erous simulations. However, because first-order net-
works do not take advantage of predefined relation-

ships between the input nodes, they require a large
number of training passes to generalize the concepts
behind the distortions. Also, even after extensive train-

ing with a large training set, they usually achieve only
80-90_o recognition accuracy on novel examples. °'')

In order to eliminate these disadvantages, higher-
order neural networks (HONNs) can be used. (s-7)

HONNs incorporate domain-specific knowledge into
a single network. In the position, scale, and rotation-
invariant object recognition domain, distortion invad-
ance can be built directly into the architecture of the
network and does not need to be learned. Thus, the

network needs to be trained on just one view of each
object, not numerous distorted views, reducing the
training time significantly. Moreover, 100%recognition
accuracy is guaranteed for noise-free images charac-
terized by the built-in distortions.

In the next section we will discuss how known rela-

tionships can be exploited and desired invariances built
into the architecture of HONNs, explain the limitations
of using HONNs with higher resolution images, and
describe how coarse coding can be applied to HONNs
to increase the input field size for use with practical
object recognition problems. We will then present de-
tails on the performance of third-order networks on
non-ideal images characterized by white Gaussian noise

or partial occlusion.

HIGHER-ORDER NEURAL NETWORKS

The output of a node, denoted by y_ for node i, in a
general higher-order neural network is given by

Yi = O(Y_wi_x_+ E_kWukXjXk

+ EjYk_q WiilaXjXkX I + • ..) (1)

where O(f) is a non-linear threshold function such as
the hard limiting transfer function given by

y,=l, if f>0 (2)

yi = 0, otherwise

the values of x are the excitation values of the input
nodes; and the interconnection matrix elements, w,
determine the weight that each input is given in the
summation. The interconnection weights can be con-
strained such that invariance to given distortions is
built directly into the network architecture.

For instance, consider a second-order network as
illustrated in Fig. 2. In a second-order network, the
inputs are first combined in pairs and then the output
is determined from a weighted sum of these products.
The output for a strictly second-order network is given
by the function

y_= O(Y_jY_kwu_xjxk). (3)

The invariances achieved using this architecture depend
on tlie constraints placed on the weights.

As an example, each pair of input pixels combined
in a second-order network define a line with a certain

slope. As shown in Fig. 3, when an object is moved or
scaled, the two points in the same relative position
within the object still form the endpoints of a line with
the same slope. Thus, provided that all pairs of points
which define the same slope are connected to the output

node using the same weight, the network will be invari-
ant to distortions in scale and translation. In particular,

for two pairs of pixels (j, k) and (1,m), with coordinates
(x_, yj), (xt, y_), (xl, y,), and (x., y.), respectively, the

jk_"Yi

x I x 2 x 3 x 4

Fig. 2. Second-order neural network. In a second-order neu-
ral network, the inputs are firstcombined in pairs (at X) and
the output is determined from a weighted sum of these

products.

Fig. 3. Translation and scale invariance in a second-order
network. By constraining the network such that all pairs of

points which define equal slopes use equal weights, translation

and scale invariance are incorporated into a second-order
neural network.
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weights are constrained according to

wijk = wit,,, if(yk - yj)/(x k - x j) = (Ym -- Y,)/(Xrn -- Xl)-

(4)

Alternatively, the pair of points combined in a second-

order network may define a distance. As shown in

Fig. 4, when an object is moved or rotated within a

plane, the distance between a pair of points in the same

relative position on the object does not change. Thus,

as long as all pairs of points which are separated by

equal distances are connected to the output with the

same weight, the network will be invariant to transla-

tion and in-plane rotation distortions. The weights for

this set of invariances are constrained according to

WOk = Wilm, if tld i_ II= IIdim II- (5)

Fig. 4. Translation and rotation invariance in a second-order
network. By constraining the network such that all pairs of
points which are equal distances away use equal weights,
translation and rotation invariances are incorporated into a

second-order network.

Yi ..

x I x2 x3 x4

Fig. 5. Third-order neural network. In a third-order neural
network, input nodes are first multiplied together in triplets
(at X) and then the output is determined from a weighted sum

of the products.

Fig. 6. Position, scale, and rotation invariance in a third-
order network. As long as all similar triangles are connected
to the output with the same weight, a third-order network
will be invariant to scale, in-plane rotation, and translation

distortions.

That is, the magnitude of the vector defined by pixels

j and k(dj_) is equal to the magnitude of the vector

defined by pixels I and re(dr,,,).

To achieve invariance to translation, scale, and in-

plane rotation simultaneously, a third-order network

can be used. The output for a strictly third-order net-

work, shown in Fig. 5, is given by the function

y_ = O(Y-.j_._.lwoux _xkxj). (6)

All sets of input pixel triplets are used to form triangles

with included angles (_t, fl, y) as shown in Fig. 6. When

the object is translated, scaled, or rotated in-plane, the

three points in the same relative positions on the object

still form the included angles (ct, fl, 3'). In order to achieve

invariance to all three distortions, all sets of triplets
forming similar triangles are connected to the output

with the same weight. That is, the weight for the triplet

of inputs (j, k, l) is constrained to be a function of the

associated included angles (a, fl, 3')such that all elements

of the alternating group on three elements (group A3)

are equal:

wij_t = w(i, =,/_, 3') = w(i,/L _, _) = w(i, 3',_,/_). (7)

Note that the order of the angles matters but not which

angle is measured first.

The constraint that all similar triangles are connected

to the output node with the same weight can be imple-

mented in two steps:

(a) Calculate the included angles _t,_, and ), (to some

granularity) formed by each combination of three pixels

for a given input field size. Since this computation is

expensive and the combination of triplets for a given

input field size does not depend on the objects to be

distinguished, these angles can be precalculated and

stored. This step would then be modified to read the

included angles corresponding to each combination of

three pixels from a file rather than calculating them.

(b) Set up the correspondence between the angles

0t, fl, and _, (same granularity) such that all triplets of

the angles which are members of the alternating group

(that is, the order of the angles matters, but not which

one comes first) point to a single memory location.

This assures that all similar triangles will manipulate

the same weight value. Our implementation uses three

matrices (w, wangle, and w_invar) linked with pointers.

Each location in w (indexed by the triple i,j, k represen-

ting the input pixels) points to a location in w_angle

(indexed by the triple _t, fl, 3' representing the angles

formed by the triple ijk). Similarly, each location in

w_angle points to a location in w_invar, also indexed

by a triple of angles a, fl, 3'ordered such that the smallest

angle is assigned to _t. That is, w_anole[80] [60] 1-40]

points to w_invar[40][80] [60], as do the elements

w_angle[60] [40] [80] and w_anole[40] [80] [60].

The implementation of the second-order network con-

straints specified by equation (4) or equation (5) re-

quires obvious modification to the above steps.

Because HONNs are capable of providing non-linear

separation using only a single layer, once invariances
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are incorporated into the architecture, the weights can
be modified using a simple rule of the form

Awij_= (ti - yi)xjx_ (8)

for a second-order network, or

AWijkl = (t i -- yi)XjXlXl, (9)

for a third-order network, where the expected training
output, t, the actual output, y, and the inputs, x, are
all binary.

The main advantage of building invarianee to geo-
metric distortions directly into the architecture of the
network is that the network is forced to treat all distor-

ted views of an object as the same object. Distortion
invariance is achieved before any input vectors are
presented to the network. Thus, the network needs to
learn to distinguish between just one view of each
object, not numerous distorted views.

The most severe limitation of this method is that the

number of possible triplet combinations increases as
the size of the input field increases. In an N x N pixei
input field, combinations of three pixels can be chosen
in N2-choose-3 ways. Thus, for a 9 x 9 pixei input field,
the number of possible triplet combinations is 81-
choose-3 or 85,320. Increasing the resolution to 128 x
128 pixels increases the number of possible intercon-
nections to 1282-choose-3 or 7.3 x l0 t t, a number too

great to store on most machines. On our Sun 3/60 with
30 MB of swap space, we can store a maximum of 5.6
million (integer) interconnections, limiting the input
field size for fully connected third-order networks to
18 x 18 pixels.

To circumvent this limitation, we use a coarse coding
algorithm which allows a third-order network to be
used with a practical input field size of at least 127 x 127
pixels while retaining its ability to recognize images
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Fig. 7. An example of a coarse-coded input field:(a) a 10x 10
pixel input field;(bl two fields of 5x 5coarse pixels.

which have been scaled, translated, or rotated in-plane.
Training takes just a few passes and training time is on
the order of minutes on a Sun 3/60 or less than a
second on a Sun SPARCstation 2.

The coarse coding representation we use involves
overlaying fields of coarser pixeis in order to represent
an input field composed of smaller pixets, ts'9_as shown
in Fig. 7. Figure 7(a) shows an input field of size 10 x t0
pixels. In Fig. 7(b), we show two offset but overlapping
fields, each of size 5 x 5 "coarse" pixels. In this case,
each coarse field is composed of pixels which are twice
as large (in both dimensions) as in Fig. 7(a). To reference
an input pixel using the two coarse fields requires two
sets of coordinates. For instance, the pixel (x = 7,y = 6)
on the original image would be referenced as the set of
coarse pixels ((x = D, y = C) and (x =III, y = III)), as-
suming a coordinate system of(A, B, C, D, E) for coarse
field one and (I, II, III, IV, V) for coarse field two. In
order to represent pixels which are not intersected by
all coarse fields, such as pixel (1, 5), coarse coding can
be implemented either by using wraparound or by
using only the intersection of the fields. If coarse coding
is implemented using wraparound, pixel (1, 5) could be
represented as the set of coarse pixels ((A, C) and (V, II)).
On the other hand, if coarse coding is implemented as
the intersection of the coarser fields, the two fields

shown in Fig. 7(b) would be able to uniquely describe
an input field of 9 x 9 pixels, not 10 x 10.

Using wraparound, the relationship between the
number of coarse fields (n), input field size (IFS), and
coarse field size (CFS) in each dimension is given by

IFS = (CFS*n). (10)

On the other hand, using the intersection of fields
implementation, the relationship between number of
coarse fields, input field size, and coarse field size in
each dimension is given by

IFS = (CFS*n) - (n - 1). (11)

The effective input field size, IFS, is not significantly
different with either implementation for small n. Fur-
ther, either implementation yields a one-to-one trans-
formation. That is, each pixei on the original image
can be represented by a unique set of coarse pixels.

The above transformation of an image to a set of
smaller images can be used to greatly increase the
resolution possible in a higher-order neural network.
For example, a fully connected third-order network
for a 100 x 100 pixel input field requires 1002-choose-3
or 1.6 x 1011 interconnections. Using 10 fields of 10 x 10
coarse pixels requires just 102-choose-3 or 161,700
interconnections, accessed once for each field. The
number of required interconnections is reduced by a
factor of ~ 100,000.

As an example of how coarse coding can be applied
to HONNs, consider training the network to distin-
guish between a "T" and a "C" in an 8 x 8 pixel input
field, as shown in Fig. 8. With coarse coding implemen-
ted with wraparound, as explained previously, there
are two possible combinations which will provide an
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(a)

(b)
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Fig. 8. Using coarse-coded fields with HONNs: (a) two
training images in an 8 x 8 pixel input field; (b) two possible
configurations of coarse pixels to represent the input field in
(a); (c) coarse-coded representation of the training images in

(a) using two layers of 4 x 4 coarse pixels.

effective input field of 8 x 8 pixels: two fields of 4 x 4

coarse pixels or four fields of 2 x 2 pixels. Both possibi-

lities are shown in Fig. 8(b).

Applying coarse coding by using two fields of 4 x 4

coarse pixels, the two images shown in Fig. 8(a) are

transformed into the four images shown in Fig. 8(c).

Training of the network then proceeds in the usual way

with one modification: the transfer function thresholds

the value obtained from summing the weighted tri-

angles over all coarse images associated with each

training object. That is

y = 1, if . {E,(_j_Y,_w_uxjxkx_)} > 0

y = 0, otherwise (12)

where j, k, and I range from one to the coarse pixel size

squared, n ranges from one to the number of coarse

fields, the values ofx represent coarse pixel values, and

wju represents the weight associated with the triplet of
inputs (j, k, l).

A more detailed analysis of coarse coding and its

applicability with respect to higher-order neural net-

works is presented in reference (10). Here we present

just a brief synopsis of its limitations including the

minimum and maximum coarse field size, the minimum

and maximum number of fields which can be used and

still achieve position, scale, and rotation invariant re-

cognition, and the maximum input field resolution

possible.

We evaluated the coarse coding technique using the

expanded version of the T/C problem. As explained in

Rumelhart et al. TM in the T/C problem both objects are

constructed of five squares, as illustrated in Fig. 9, and

the problem is to discriminate between them indepen-

dent of translation or 90 ° rotations. In our work, the

network was also required to distinguish between the

objects invariant to distortions in scale.

The minimum possible coarse field size is cletermined
by the training images. The network is unable to distin-

guish between the training images when the size of

each coarse pixel is increased to the point where the

training images no longer produce unique coarse coded

Fig. 9. TIC problem. In the T/C recognition problem, each
pattern consists of five squares. Over all in-plane rotations
and translations, the patterns can be discriminated only if

combinations of triplets of pixels are examined.

representations. As an example, for the TIC recognition

problem the minimum coarse field size which still pro-

duces unique representations is 3 x 3 pixels.

In contrast, the maximum limit is determined by the

HONN architecture and the memory available for its

implementation, and not by the coarse coding tech-

nique itself. As discussed previously, the number of

possible triplet combinations in a third-order network

is N2-choose-3 for an N x N pixel input field and given

the memory constraints of our Sun 3/60, the maximum

possible coarse field size is 18 x 18 pixels.

Regarding the number of coarse fields which can be

used and still achieve PSRI object recognition, the

minimum is one field whereas the maximum has not

yet been reached. A minimum ofone coarse field repre-
sents the non-coarse-coded HONN case. In order to

determine the limit for the maximum number of fields

possible, we ran simulations on the T/C problem coded

with a variable number of 3 x 3 coarse pixels. A third-

order network was able to learn to distinguish between

the two characters in less than ten passes in an input

field size of up to 4095 x 4095 pixels using 2047 fields.t

Increasing the number of fields beyond this was not

attempted because 4096 x 4096 is the maximum res-

olution available on most image processing hardware

which would be used in a complete HONN-based

vision system. Also, each object in such a large field

requires 16MB of storage space. It takes only a few

such objects to fill up a disk. :1:

Finally, as with the maximum number of coarse

fields, the maximum input field resolution possible
with coarse coded HONNs has not been delimited. As

discussed above, we trained a third-order network on

the T/C problem in up to a 4096 x 4096 pixel input

field. We expect a resolution of 4096 x 4096 is sufficient

for most object recognition tasks. Notwithstanding,

we also expect a greater resolution is possible.

2D OBJECT RECOGNITION SIMULATION RESULTS

We evaluated the performance of HONNs on num-

erous object recognition problems, including an SR-

71/U-2 discrimination problem and an SR-71/Space

"j"An input field resolution of 4096 x 4096 was also achieved
by using 273 fields of 16 x 16 coarse pixels.

:_ Note that this is not a limitation of the coarse-coding
scheme itself. Ifa 4096 x 4096 pixel image could be stored on
disk, using the intersection of fields approach to coarse coding,
we could represent it as 228 fields of 18 x 18 coarse pixels,

requiring only 5.6 MB memory.
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Fig. 10. The 8-bit gray level images from which the training

images are generated: {a) Space Shuttle; (b) SR-71; (c) U-2.

(a)

(b)

Fig. 11. Training _mages. One binary edge-only view each
for: {a) Space Shuttle Orbiter vs. SR-71; tb) SR-71 vs. U-2.

Shuttle discrimination problem. The simulations used

a coarse-coded third-order network designed for a

127 x 127 pixel input field. For ease of implementation,

we used the intersection of fields approach to coarse

coding with nine fields of 15 × 15 coarse pixels. The

training sets were generated from actual models of the

aircraft. The 8-bit gray level images of the aircraft are

shown in Fig. 10. The images were thresholded to

produce binary images, and then edge detected using

a digital Laplacian convolution filter with a positive

derivative to produce the images shown in Fig. 11. For

rotated and scaled views of the objects, the original

gray level images were first scaled, then rotated, and

then thresholded and edge detected. Notice that the

profiles of the SR-71 and Space Shuttle are somewhat

similar whereas those of the SR-71 and U-2 are very

different.

For both recognition problems, the network learned

to distinguish between the aircraft in less than 10 passes

through the training set.t The networks were then

tested on a set of rotated, scaled, and translated views.

A complete test set of translated, scaled, and 1° rotated

views of the two objects in a 127 x 127 pixel input field

consists of over 100 million images. Assuming a test

rate of 200 images per hour, it would take computer-

years to test all possible views. Accordingly, we limited

the testing to a representative subset consisting of four

sets:

(1) All translated views, but with the same orientation

and scale as the training images.

(2) All views rotated in-plane at ! intervals, centered

approximately at the same position and of the same

size as the training images.

(3) All scaled views of the objects, in the same orien-

tation and centered at the same position as the training

images.

(4) A representative subset of approximately 100

simultaneously translated, rotated, and scaled views of

the two objects.

For both recognition problems, the networks achiev-

ed 100_ accuracy on all test images in sets (I) and (2).

Furthermore, the networks recognized, with 100_o ac-

curacy, all scaled views, from test set (3), down to 70_

of the original size. Finally, for test set (4), the network

correctly recognized all images larger than 70_ of the

original size, regardless of the orientation or position

of the test image.

As shown in previous research, _'t°_ invariance to

scale is affected by the resolution to which the angles

a, fl, and ? in equation (7) are calculated. Briefly, as the

resolution of the input field is increased, the resolution

to which _t,8, and ? are calculated can also be increased,

generally increasing scale invariance. Scale invariance
also varies with the coarse field size and the number of

f The SR-71 vs. Space Shuttle problem required two passes
through the training set, while the SR-71 vs. U-2 required six
passes.
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shuttle.s1.0.r30.n21 shuttle.sO.9.r45.n33 shuttle.sO.8.rO.n40

sr71 .sO.9.r30.n21
I

sr71 .sO.8.r45.n33

i •

sr71 .sO.7. rO.n40

I •

u2.sO.8.r30.n21 uZ.sO.7.r45.nZ 9 u2.sl .O.rO.n33

Fig. 12. Typical images used to test the tolerance of HONNs to white Gaussian noise. Test images were
generated automatically by adding a normally distributed random gray value (with a mean of 0 and a
standard deviation from 1 to 50) to the original gray level value and then binarizing and edge detecting the
resulting image. Values for scale, rotation, and standard deviation are shown under each image. For example,
"s0.7.r30.n20" is an image of scale 70%, rotation 30 ° and standard deviation of 20. For each object, we show

a noise level recognized with an accuracy of 100, 75, and 50yo.

coarse fields used. In general, a larger coarse field size

yields greater scale invariance. However, the learning
time also increases as the coarse field size increases.

Thus, if less scale invariance can be tolerated, a desired

input field size can be represented with a smaller coarse

field size and greater number of coarse fields. A more

detailed analysis of coarse coding and its applicability

and limitations with respect to HONNs is presented in

reference (10).

NOISE TOLERANCE SIMULATIONS

We evaluated the performance of HONNs with noisy

images on the same two object recognition problems

discussed above: the SR-71/U-2 discrimination problem

and the SR-7 l/Space Shuttle discrimination problem.

In particular, following training, the networks were

tested on numerous non-ideal images in order to deter-

mine the performance of HONNs to white Gaussian

noise and partial occlusion.

WHITE GAUSSIAN NOISE

To test the tolerance of HONNs to white noise, each

instantiation of the network (one for the SR-71/U-2

problem and one for the Shuttle/SR-71 problem) was

tested on 1200 images generated by modifying the 8-bit

gray level values of the original images using a Gaussian
distribution of random numbers with a mean of 0 and

a standard deviation of between 1 and 50. The test set

consisted of 50 images (with increasing standard devi-

ation from 1 to 50)'t" for each of four scales ranging
from 70 to 100% in 10Yo increments, and each rotation

of 0 °, 30 °, and 45 °. For 90 ° angles, our rotation routine

produces an image in which all combinations of three

input pixels produce the same included angles as those

produced by the unrotated image. Thus, the three

angles used represent a much wider variety of distor-

t For values falling outside [0, 255], the modified gray
scale value was rounded to the nearest in-range value.
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Fig. 13. Tolerance of HONNs to white Gaussian noise
introduced as in Fig. 12. Each instantiation of a third-order
network designed to be invariant to distortions in scale,
translation, and in-plane rotation (one for the SR-71/U-2
problem and one for the Shuttle/SR-71 problem) was tested
on 1200 images generated by modifying the 8-bit gray level
values of the original images using a Gaussian distribution of
random numbers with a mean of 0 and a standard deviation

between 1 and 50. The test set consisted of 50 images (with
increasing standard deviation from 1 to 50) for the four scales
ranging from 70 to 100_o in 10% increments, and each
rotation of 0 '', 30, and 45. For 90 angles, our rotation
routine produces an image in which all combinations of three
input pixels produce the same included angles as those
produced by the unrotated image. Thus, the three angles used
represent a much wider variety of distorted images than is
initially apparent. The noisy images were then binarized and

edge detected.

ted images than is initially apparent. The noisy images

were then binarized and edge detected. Typical test

images, along with their values for standard deviation

(_r), scale, and rotation, are shown in Fig. 12.

To have an affect on the processed binary image, the

modified gray level value must cross the threshold

value. Hence, the amount of noise tolerated will depend

on the distribution of gray level values in the original

images such that for a given a, images with low con-

trast foreground/background values appear noisier than

images with high contrast foreground/background

values. In our case, the lighting conditions present

when the images in Fig. 10 were taken produced dark

areas with gray level values of approximately 20 and

light areas with gray level values of approximately 220,

with decreasing light area values near the edges and

where the original model had decals or other anomalies,

such as windows. Our threshold value was 128. Thus,

our results show the performance of HONNs with
white noise in almost ideal conditions.

The results are summarized in Fig. 13. The network

performed with 100% accuracy for our test set for a

standard deviation of up to 23 on the SR-71/U-2 prob-

lem and 26 on the Shuttle/SR-71 problem. For the

similar images of the Shuttle and SR-71, the recognition

accuracy quickly decreased to 75%; at a a of 30 and to

50?/0 (which corresponds to no better than random

guessing) for o greater than 33. The SR-71/U-2 remain-

ed above 75_o accuracy up to a o of 35 (or _ 14_/o of the

gray level range) and gradually decreased to 50% at a

o of 40 (or ~ 16'_.oof the gray level range). If we define

"good performance'" as greater than 75°_ ', accuracy,

HONNs have good performance for a up to 35 (or

~ 149/0 of the gray level range) for images with very

distinct profiles and o- up to 30 (or ~ 12_o of the gray

level range) for images with similar profiles. It should

be noted that these results apply only to images with

an ideal separation of background/foreground gray

levels. For images with a lower contrast, the perfor-

mance may be quite different.

OCCI.USION

To test the tolerance of HONNs to partial occlusion,

the two instantiations (one for the Shuttle/SR-71 prob-

lem and one for the SR-71/U-2 problem) of the third-

order network built to be invariant to scale, in-plane
rotation, and translation as described above were test-

ed on occluded versions of the image pairs for each of

four scales ranging from 70 to 100_o in 10_ increments,

and each rotation of 0_', 30 _', and 45'. Again, as for

white noise, these three angles represent a much wider

variety of distorted images than is initially apparent.

We started with binary, edge-only images and added

automatically-generated occlusions based on four vari-

able parameters: the size of the occlusion, the number

of occlusions, the type of occlusion, and the position

of the occlusion. Objects used for occlusion were

squares with a linear dimension between 1 and 29

pixels. The number of occlusion objects per image

varied from one to four, and the randomly chosen type

of occlusion determined whether the occlusion objects

were added to or subtracted from the original image.

Finally, the occlusions were randomly (uniform distri-

bution) placed on the profile of the training images.

The test set consisted of 10 samples for each combina-

tion of scale, rotation angle, occlusion size, and number

of occlusions for a total of 13,920 test images per

training image or 27,840 test images per recognition

problem. Typical test images are shown in Fig. 14.

As shown in Fig. 15, the performance of HONNs

with occluded test images depends mostly on the num-

ber and size of occluding objects and to a lesser degree

on the similarity of the training images. In the case of

the Shuttle/SR-71 recognition problem, the network

performed with 1000/,; accuracy for our test set for one

16 pixel occlusion and up to four 10 pixel occlusions.

It performed with better than 75_o accuracy ("good

performance") for up to four 19 pixel occlusions, three

21 pixel occlusions, two 24 pixel occlusions, and one

29 pixel occlusion.

For the SR-71/U-2 problem, the network exhibited

good performance for the entire test set but achieved

1007._ accuracy only for one 4 pixel occlusion and up

to four 3 pixel occlusions.

CONCLUSIONS

Higher-order neural networks (HONNs) have been

shown to be effective for distinguishing between a set

of 2D objects regardless of their position, in-plane

rotation, or scale with 100°_/0accuracy on noise-free test

images characterized by the built-in distortions. Only
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huttle.sO.7,r45.o1 .n29 shuttle.sO.9.r30.o3.n21 shuttle.sl .O.rO.o4.n9

sr71 .sO.8.r45.o2.n 15 sr71 .sO.9.r30.o4.n29 st71 .sl .O.rO.ol .n7

u2.sO.8.r30.o4.n10 u2.sO.8.r45.o;Ln 15 u2.sO.9.rO.o3.n20

Fig. 14. Typical images used to test the tolerance of HONNs with respect to occlusion. We started with
binary, edge-only images and added automatically-generated occlusions based on four variable parameters:
the size of the occlusion, the number of occlusions, the type of occlusion, and the position of the occlusion.
Objects used for occlusion were squares with a linear dimension between 1 and 29 pixels. The number of
occlusion objects per image varied from one to four, and the randomly chosen type of occlusion determined
whether the occlusion objects were added to or subtracted from the original image. Finally, the occlusions
were randomly (uniform distribution) placed on the profile of the training images. The training set
consisted of 10 samples for each combination of scale, rotation angle, occlusion size, and number of

occlusions for a total of 13,920 test images per training image or 27,840 test images per recognition problem.
Values for number of occlusions and occlusion size range are shown under each typical test image. For

example, "s1.0.r30.o3.n20" is an image of scale 100%,, rotation 30 "_,and three 20 pixel occlusions.

(a) _

_ 80%

_ 7O%

I0 20 30

Size of Occlusion

(b)

100% "

£

,_ 90% "

80%

¢.)

nt

70'_
1'0 20 30

Size of Occlusion

Fig. 15. Tolerance of HONNs with respect to occlusion: (a) Shuttle/SR-71 discrimination problem;
(b) SR-7 I/U-2 discrimination problem. Each graph shows the recognition accuracy for images generated as

in the caption of Fig. 14.

one view of each object was required for learning and

the network successfully learned to distinguish between

all distorted views of the two objects in tens of passes,

requiring only minutes on a Sun 3/60. In contrast,

other neural network approaches require thousands of

passes through a training set consisting of a much

larger number of training images yet still achieve only

80-90°.i; accuracy on novel examples.

The major limitation of HONNs is that the size of

the input field is limited because of the memory required

for the large number ofinterconnections in a fully con-

nected network. In an N x N pixel input field, combi-
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nations of three pixels can be chosen in N2-choose-3

ways. Thus, for a 128 x 128 pixel input field, the number

of possible triplet combinations is ~ 7.3 x l01 t, a num-

ber too great to store on most machines. To circumvent

this limitation, we use a coarse coding algorithm which

allows a third-order network to be used with a practical

input field size while retaining its ability to recognize

images which have been scaled, translated, or rotated

in-plane.

Further, we explore the tolerance of coarse-coded

HONNs to white Gaussian noise and to partial occlu-

sion. We demonstrate that for images with an almost

ideal separation of background/foreground gray levels,

it takes a great amount of white noise in the gray level

images to affect the binary, edge-only images used for

training and testing the system to a sufficient degree

that the performance of HONNs was seriously degra-

ded. Specifically, we demonstrate that the gray level

values must be changed by a standard deviation of at

least 10_o before the recognition accuracy of HONNs

drops below 100_. HONNs continue to show good

performance (greater than 7590 recognition accuracy)

on white noise for a standard deviation up to _ 14%.

HONNs are also robust with respect to partial oc-
clusion. We trained a third-order network on two sets

of images (Shuttle vs. SR-71 and SR-71 vs. U-2) and

tested it using numerous occluded images generated

automatically by varying the size of the occlusions, the
number of occlusions, the type of occlusions, and the
location of the occlusions. The amount of occlusion

tolerated depends mostly on the size of the occlusion

and the number of occlusions, and slightly on the

similarity of the training images. On a test set for

training images with very similar profiles, HONNs

achieved 100_o recognition accuracy for one occlusion

of ~ 13_ of the input field size and four occlusions of

7_ of the input field size. They showed good perfor-

mance for one occlusion of ~ 23_ of the input field

size or four occlusions of _ 1590 of the input field size

each. On the test set for training images with very

different profiles, HONNs achieved 100_o recognition

accuracy for up to four occlusions of ~ 2_ of the input

field size and continued to show good performance for

up to four occlusions of ~ 23% of the input field size
each.

The results for white Gaussian noise reflect the per-

formance of coarse-coded third-order neural networks

on training images with high contrast gray level. For

test images with lower contrast gray levels, we expect

the tolerance of the network to white noise to decrease

while for test images with even higher contrast gray

levels, we expect the tolerance to increase. For partial

occlusions, unlike for white noise, the initial gray levels

do not have as great an effect on the performance and

thus can be generalized more readily.

All of the above results focus on the capabilities of

HONNs for position, scale, and rotation-invariant ob-

ject recognition for 2D shapes or 3D objects constrained

to rotate within a plane. In order to robustly recognize

an object which has been rotated out of plane, more

training images are required. However, since the 2D

recognition task is a component of the 3D recognition

task, we believe HONNs will outperform other methods

even in the broader domain.

REFERENCES

1. J. Mantas, Methodologies in pattern recognition and
image analysis -a brief survey, Pattern Recognition 20,
1-6 (1987).

2. C.G. Perrott and G. C. Hamey, Object recognition, a
survey of the literature, Macquarie Computing Reports,
Report No. 91-0065C, School of MPCE, Macquarie
University, Australia (1991).

3. D. E. Rumelhart, G. E. Hinton and R. J. Williams, Learn-
ing internal representations by error propagation, Parallel
Distributed Processino, Vol. 1,Chap. 8. MIT Press, Cam-
bridge, Massachusetts (1986).

4. S. E. Troxel, S. K. Rogers and M. Kabrisky, The use of
neural networks in PSRI recognition, Proc. Joint Int.
Conf. on Neural Networks, San Diego, California, pp.
593-600 (1988).

5. G. L. Giles and T. Maxwell, Learning, invariances, and
generalization in high-order neural networks, Appl. Optics
26, 4972-4978 (1987).

6. G. L. Giles, R. D. Griffin and T. Maxwell, Encoding geo-
metric invariances in higher-order neural networks, Neu-
ral Information Processing Systems, American Institute of
Physics Conf. Proc., pp. 301-309 (1988).

7. M. B. Reid, L. Spirkovska and E. Ochoa, Simultaneous
position, scale, and rotation invariant pattern classifica-
tion using third-order neural networks, Int. J. Neural
Networks 1, 154-159 (1989).

8. R. Rosenfeld and D. S. Touretzky, A survey of coarse-
coded symbol memories, Proc. 1988 Connectionist Models
Summer School, Carnegie Mellon University, pp. 256-264
(1988).

9. J. Sullins, Value cell encoding strategies, Technical Report
TR-165, Computer Science Department, University of
Rochester, Rochester, New York (1985}.

10. L. Spirkovska and M. B. Reid, Applications of higher-
order neural networks in the PSRI object recognition
domain, Fuzzy, Holographic, Invariant and Parallel Intel-
ligence: The Sixth Generation Breakthrough, B. Soucek

and the IRIS Group, eds. Wiley, New York (1992).

About the Author--LILLY SPIRKOVSKAreceived the B.S. degree in mathematics and computer science from
the University of Denver in November 1984, and the M.S. degree in computer science from the University
of California at Berkeley in May 1986. Ms Spirkovska's research in the Computational Systems Research
Branch at NASA Ames Research Center emphasizes machine vision techniques. She is a member of the
Association for Computing Machinery (ACM) and the International Neural Network Society (INNS) as
well as the honor societies Phi Beta Kappa and Pi Mu Epsilon. She has published numerous articles in the
area of neural pattern recognition, including two book chapters.



Robust position, scale, and rotation invariant object recognition 985

About the Author--MAx REID received the B.S. degree in electrical engineering and computer science with

Special Honors from the University of Colorado, Boulder, in 1983, and the M.S. and Ph.D. degrees in

electrical engineering from Stanford University, Stanford, California, in 1986 and 1988, respectively. Dr Reid
is currently the Photonics Group Leader in the Computational Systems Research Branch at NASA Ames

Research Center, Mountain View, California. His research includes optical and neural pattern recognition
techniques, optical matrix processors, and optical implementations of neural networks. He is a member of

the Institute of Electronic Electrical Engineers, the Optical Society of America, the American Institute of

Physics, and the International Neural Network Society. He has published over 30journal and conference
articles in the areas of optical processors, lasers, and neural networks.




